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Shared-Variable Concurrency (15 Marks)

Question 1 (8 marks)

Give all possible final values of variable x in the following program. Prove your answer
correct in Andrews’ PL.

1 int x = 0;
2 sem s1 = 0, s2 = 1;
3 co P(s1); P(s2); x = x ∗ 2; V(s2);
4 // P(s2); x = x ∗ x; V(s2);
5 // P(s2); x = x + 3; V(s2); V(s1);
6 oc

Question 2 (7 marks)

Hyman’s Algorithm. The following algorithm was published in the Communications of the
ACM in January 1966. Does it solve the critical section problem for two processes? Prove
your answer.

1 # assume a type bit with the two values 0 and 1
2 bit turn, flag[0:1] = ([2] 0);
3 process HIA [i = 0 to 1] {
4 while (true) {
5 flag[i] = 1;
6 while (turn != i) {
7 <await (flag[1−i] == 0);>
8 turn = i;
9 }

10 # critical section
11 flag[i] = 0;
12 }

13 }

Message-Passing Concurrency (30 Marks)

Question 3 (7 marks)

Suppose a computer center has two printers, A and B, that are similar but not identical.
Three kinds of client processes use the printers: those that must use A, those that must
use B, and those that can use either one. Using the multiple primitives notation (i.e.,
in .. −> .. []..ni), fill in the gap in the following program such that it becomes a fair solution,
assuming that clients eventually release printers.

(Write your answer to this question directly on this page.)

global PrintMoron
type prType = enum (prA, prB); # printer type
type reqType = enum (reqA, reqB, reqD); # print request type; D = don’t care
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op request ( int pid, reqType r, ref prType p) {call };
op release ( int pid, prType p);

body PrintMoron
bool Afree = true, Bfree = true; # printer availability
int Auser = −1, Buser = −1; # who uses the printer; -1 = nobody

process Granter {
while (true) {

# gap
# gap
# gap
# gap
# gap
# gap

}

}

process Releaser {
while (true) {

# gap
# gap
# gap
# gap
# gap
# gap

}

end PrintMoron

resource main ()
import PrintMoron;
int numRequesters; getarg (1, numRequesters);
int numRounds; getarg (2, numRounds);
reqType rqt[0:2] = (reqA, reqB, reqD);

process Requester[i = 1 to numRequesters] {
prType p;
reqType r;
for [ j = 1 to numRounds] {

nap (int ( random () ∗ 100));
r = rqt[ int ( random (3))];
write (”Process”, i , ”requesting print service”, r);
PrintMoron.request (i, r, p);
write (”Process”, i , ”using printer”, p, ”after requesting”, r);
nap (int ( random () ∗ 100));
PrintMoron.release (i , p);
write (”Process”, i , ”releasing printer”, p);
}

}

end main
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Question 4 (7 marks)

Hamming’s problem. Develop an MPD program whose output is the sequence of all multi-
ples of 2, 3, and 5 in ascending order. The first elements of the sequence are 0, 2, 3, 4, 5, 6,
8, 9, 10, 12, 14. There will be four concurrent processes: one each to calculate the multiples
of the numbers 2, 3, and 5, respectively, and a fourth process to merge the results.

Question 5 (7 marks)

Prove
{
true
}

P
{
x = z ∧ y ≤ z

}
for the synchronous transition diagram P depicted below.

s1

s2

s3

l1

l2

l3

l′3

t1

t2

t3

x := x + 1 B!x

A!x

B?z C!z

D?z

A?y D!y

C?y y := y − 1
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Question 6 (9 marks)

Partitioning a set. Give two disjoint sets of integers S0 and P0, their union S0 ∪ P0 has to be
partitioned into two subsets S and P such that |S| = |S0| and |P| = |P0|, and every element
of S is smaller than any element of P.

Prove the synchronous transition diagram given below correct with respect to precondition

S = S0 ∧ P = P0 ∧ S , ∅ ∧ S ∩ P = ∅ ∧ x , m ∧ y , n

and postcondition

S ∪ P = S0 ∪ P0 ∧ S ∩ P = ∅ ∧ |S| = |S0| ∧ |P| = |P0| ∧max S < min P

where, by convention, min ∅ = +∞.

s1 l1 l2 l3

t1

s2 l′1 l′2 l′3

t2

m , x→ m :=max S A!m→ S := S \ {m}

B?x→ S := S ∪ {x}m = x

A?y→ P := P ∪ {y} n :=min P

B!n→ P := P \ {n}n = y

Discuss termination for 3 bonus marks.

5



A Andrews’ PL (a Proof System for MPD Annotations)

Assignment axiom {
φ[e/x]

}
x = e

{
φ
}

ass

Composition rule {
φ
}

S1

{
ψ
}

,
{
ψ
}

S2
{
ψ′
}{

φ
}

S1;S2

{
ψ′
} comp

If-Else statement rule {
φ ∧ b

}
S1

{
ψ
}

,
{
φ ∧ ¬b

}
S2

{
ψ
}{

φ
}
if (b) S1 else S2

{
ψ
} if

While statement rule {
φ ∧ b

}
S
{
φ
}{

φ
}
while (b) S

{
φ ∧ ¬b

} while

Rule of consequence

φ′ → φ,
{
φ
}

S
{
ψ
}

, ψ→ ψ′{
φ′
}

S
{
ψ′
} cons

Await statement rule {
φ ∧ b

}
S
{
ψ
}{

φ
}
<await (b)S>

{
ψ
} await

Co statement rule {
φi

}
Si

{
ψi

}
hold and are interference free{∧

i φi

}
co S1 // . . . // Sn oc

{∧
iψi

} co

Semaphore wait rule

φ ∧ s > 0→ ψ[s−1/s]{
φ
}
P(s)

{
ψ
} P

Semaphore signal rule

φ→ ψ[s+1/s]{
φ
}
V(s)

{
ψ
} V

Simplifying assumption: arithmetic on bounded types such as int does not wrap around
silently. Overflow and underflow errors lead to abnormal termination which renders
program behaviours irrelevant to partial correctness arguments such as proofs in PL.
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